

Source: Clark-Nexsen

VIRGINIA ADVANCED SHIPBUILDING & CARRIER INTEGRATION CENTER

NEWPORT NEWS, VA

John Boyle Structural Option Thesis Advisor – Dr. Behr

I would like to thank the following individuals for their support on this project

PENNSTATE Department of Architectura

Professor M. Kevin Parfitt Professor Robert Holland Dr. Behr

I would also like to thank my parents, John and Diana for their relentless support throughout this semester

ACKNOWLEDGEMENTS

Architectural Engineering

CLARK • NEXSEN

Architecture & Engineering

Kurt J. Clemente

- Introduction
 - Building Statistics
 - Architecture
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Size: 241,000 sf
- Number of Stories: 8
- Actual cost: \$58 million

Building Statistics

Building Occupancy Name: Northrop Grunman Newport News

Occupancy Type: Office / Research / Shipbuilding Facility

• Date of Construction: December 1999-February 2002

Project Delivery: Design-Bid-Build

Project Team

Clark-Nexsen Architecture & Engineering

Source: Clark-Nexsen

Architecture & Engineering

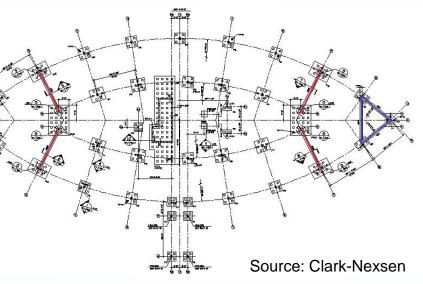

- Introduction
 - Building Statistics
 - Architecture
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Achieves light, open feel
 - Uses steel wide-flange members
 - Enclosed in reflective curtain wall
- Curve shape
 - Gives appearance of a tall, glass ship looking over the James River
- Concrete "figurehead"

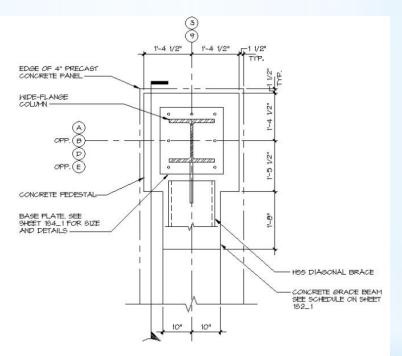
Architecture



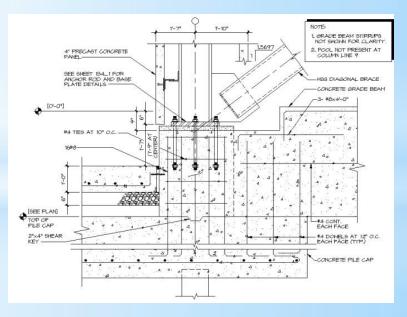
- Introduction
- Existing Structural System
 - Foundation
 - Gravity
 - Lateral
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis


FOUNDATION

- Wide-flange steel column on a concrete pedestal • Placed around perimeter of the building
- Soil Condition: Unstable soil
- Grade beams: 20" & 22" •


 - Resist lateral column base movement • Distribute weight of the building over soil

Existing Structural System



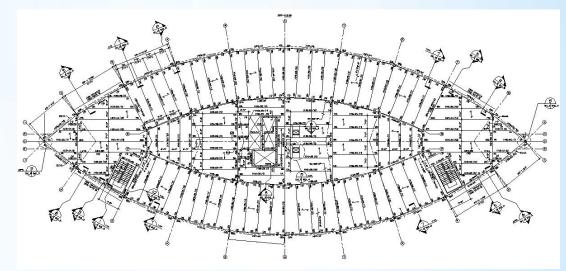
CONC. PEDESTAL PLAN

Source: Clark-Nexsen

CONC. PEDESTAL SECTION

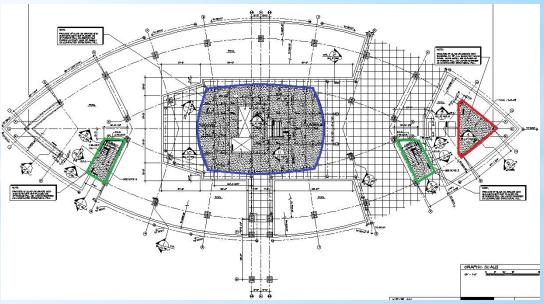
Source: Clark-Nexsen

- Introduction
- Existing Structural System
 - Foundation
 - Gravity
 - Lateral
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis


GRAVITY

- FLOOR
- BEAMS / COLUMNS
- 1st Floor

Existing Structural system


• 4.5" total thickness composite steel deck and slab • Lightweight concrete placed 2" deep, .038" thick galvanized steel deck • Yield Strength: 33 ksi • Steel wide-wide flange members • W12x14 – W18x40 used for beams • W8, W10, W12, W14 used for columns

 5" slab on grade w/ 6x6 W2.9xW2.9 WWF (blue) • 8" slab on grade- #4 bars @ 12" o.c. (red) • 6" slab on grade w/ 6x6 W2.9xW2.9 WWF (green)

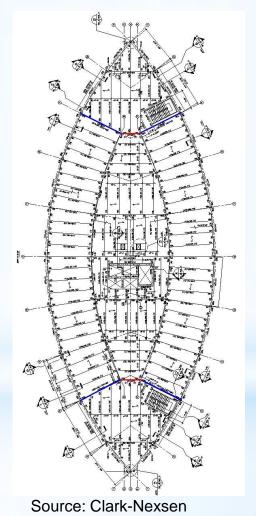
First Floor Structural Floorplan

Source: Clark-Nexsen

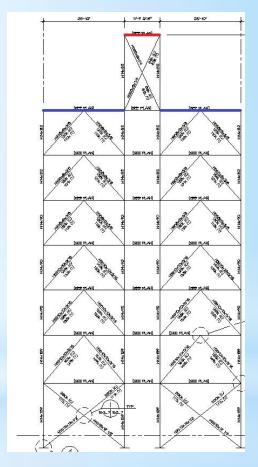
Floors 2-7 Structural Floorplan

Source: Clark-Nexsen

- Introduction
- Existing Structural System
 - Foundation
 - Gravity
 - Lateral
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis


LATERAL

- K-Braced Frame
 - Wide-flange members used for vertical members
 - HSS members used for cross-bracing
- X-Bracing used in 3 bays
 - Penthouse resists largest wind force
 - Bays on bottom level have added weight of floors above
 - X-bracing allows one member to be in tension and one to be in compression
- Caters well to the shape of the building
- Allows lateral loads to be distributed throughout the unique shape of the building


Existing Structural System

• W14x82 – W14x90 – W14x159

K-Braced Frame Location

K-Braced Frame Section

Source: Clark-Nexser

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

Problem Statement

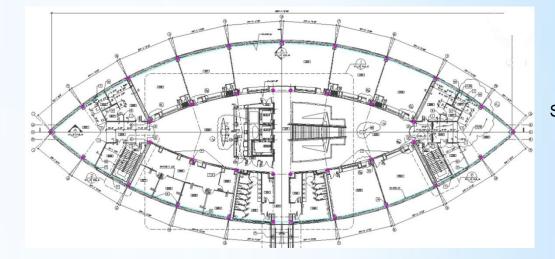
 Curved shape leads to confusing column layouts • Current column layout leads to confusing beam and joist layouts Creates great differences in floor depth

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Investigate new column layouts
- Redesign structural system using reinforced concrete
 - Composite Steel Deck / Wide flange steel beams
 - => Two-way flat slabs
 - Wide flange steel columns
 - => Reinforced concrete columns
- K-Braced lateral resisting frame
- Reduces floor thickness which will allow building to keep a light, • open feel and may reduce cost

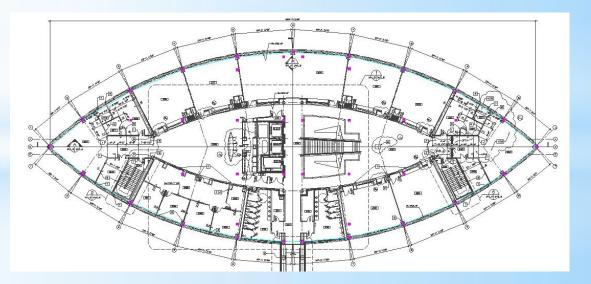
Problem Solution

=> Shear walls


- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: **Column Layout Redesign**
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Original column layout: • Contains irregularly shaped bays

 - Crafted to shape of building
- Redesign


 - Created grid using existing perimeter columns • Created moderately sized, rectangular bays • Will make designing column strips and drop panels easier • Smallest Bay: 24'-11" x 2'-3"
 - Largest Bay: 29'-11" x 33'-10"
 - Columns are placed with little-to-no interference with the current floor plan

Architectural Breadth: Column Layout Redesign

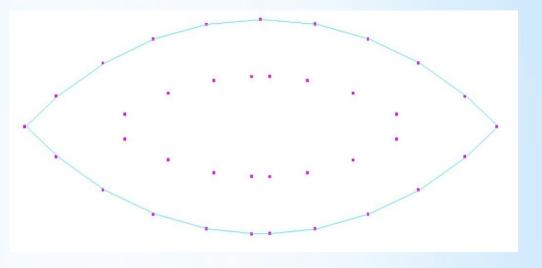
Redesigned Column Layout

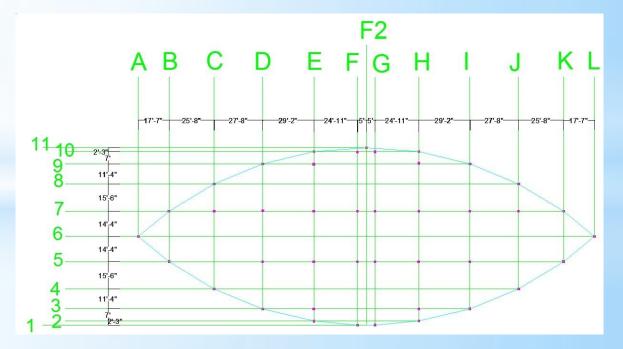
Source: Clark-Nexsen

Current Column Layout

Source: Clark-Nexsen

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: **Column Layout Redesign**
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis


- Original column layout: • Contains irregularly shaped bays


 - Crafted to shape of building
- Redesign

 - Created grid using existing perimeter columns • Created moderately sized, rectangular bays • Will make designing column strips and drop panels easier • Smallest Bay: 24'-11" x 2'-3"
 - Largest Bay: 29'-11" x 33'-10"
 - Columns are placed with little-to-no interference with the current floor plan

Architectural Breadth: Column Layout Redesign

Current Column Layout

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign

Slab Redesign

- Results
- Architectural Impact

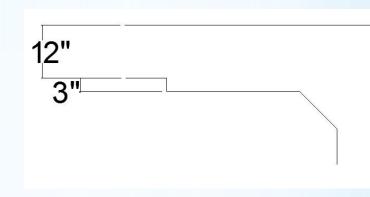
Loads

- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

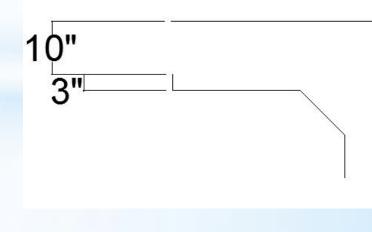
- Original floor system Composite steel deck • Wide-flange steel beams

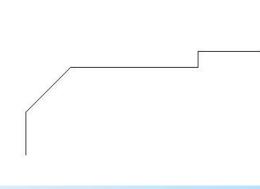
 - Floor thickness: 22.5"
- Redesign

 - Two-way flat slab: 4,000 psi concrete Advantages
 - Easy formwork


 - Minimize floor-to-floor heights
- Results

 - 12" thickness w/ 3" drop panels • Penthouse:
 - 10" thickness w/ 3" drop panels
 - Nearly 8"/floor reduction


Slab Redesign


• Simple bar placements

SLAB THICKNESS FLOORS 1-7

SLAB THICKNESS PENTHOUSE

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
 - Results
 - Architectural Impact
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Architectural Impact
 - 8" reduction in floor thickness
 - Reduces total floor height by nearly 5 feet

FLOOR
1 st
2 nd
3 rd
4 th
5 th
6 th
7 th
Penthouse
Roof

Slab Redesign

HEIGHT (CURRENT BUILDING)	HEIGHT (REDESIGN)
0'-0"	0'-0"
17'-6"	17'-6"
32'-10"	32'-2"
47'-2"	45'-10"
61'-6"	59'-6"
75'-10"	73'-2"
90'-2"	86'-10"
104'-6"	99'-8"
126'-3"	122'-1"

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
 - Gravity
 - Wind
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

GRAVITY

Live loads

OCCUPAN
Penthouse Roof
Low Roof
Penthouse Floor
Offices
Conference Roor
Corridors
Stairs
Toilets

Source: Clark-Nexsen

Dead loads

LOAD Normal Weight C Lightweight Con MEP Partitions Finishes Curtain Wall Source: Clark-Nexsen

Loads

CY	DESIGN LOAD (psf)	THESIS LOAD (psf)
	20	20
	80	60
	125	125
	80	50
ns	100	100
	100	80
	100	100
	75	75

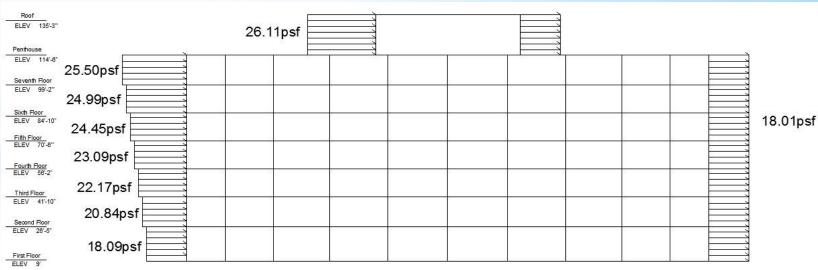
ТҮРЕ	LOAD	
Concrete	150 pcf	
crete	120pcf	
	10psf	
	20psf	
	10psf	
	15psf	
NI		

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
 - Gravity
 - Wind
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

WIND

- Location: Newport News, VA
- • Exposure: D (Building @ Shoreline)
- Occupancy: III

	Height	Kz	qz	Р	Height Difference	F
First	9	0.943	16.62	18.09	0	0.00
Second	26.5	1.137	20.05	20.84	17.5	91.60
Third	41.83	1.231	21.70	22.17	15.33	87.19
Fourth	56.16	1.296	22.85	23.09	14.33	87.43
Fifth	70.5	1.348	23.77	23.83	14.34	89.97
Sixth	84.83	1.393	24.54	24.45	14.33	92.11
Seventh	99.16	1.431	25.22	24.99	14.33	97.42
Penthous e	114.5	1.467	25.86	25.50	15.34	121.17
Roof	135.21	1.510	26.62	26.11	20.71	70.30


Loads

• Basic Wind Speed (V): 90 mph Wind Loads

Wind Forces

	Force (k)	Shear (k)
Ground	0	179
First	92	175
Second	87	177
Third	87	182
Fourth	90	190
Fifth	92	219
Sixth	97	191
Penthou se	121	70
Roof	70	0

Wind Diagram

Moment (ft-k)
0
1603
2863
4123
5533
6984
8783
12783
8873

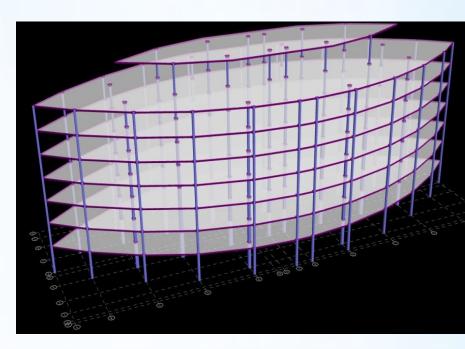
- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
 - Design Criteria
 - RAM Model
 - Results / Architectural Impact
 - Checks
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

DESIGN CRITERIA

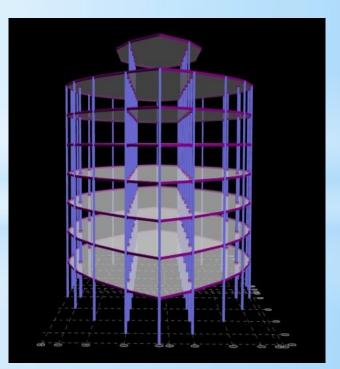
- Original column design • • Steel wide-flange members
- Redesign
 - Reinforced concrete columns w/ steel rebar • Columns kept as small as possible to retain the light, open feel of the current design

Column Redesign

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
 - Design Criteria
 - RAM Model
 - Results / Architectural Impact
 - Checks
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis


RAM MODEL

- DL: 80 psf
- LL carefully placed with floor plan
- Bar configurations:


Column Redesign

• # of bars range from 8-16

RAM Model

Front View

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
 - Design Criteria
 - RAM Model
 - Results / Architectural Impact
 - Checks
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

RESULTS

- 10"x10" in penthouse • 24x24" in first floor

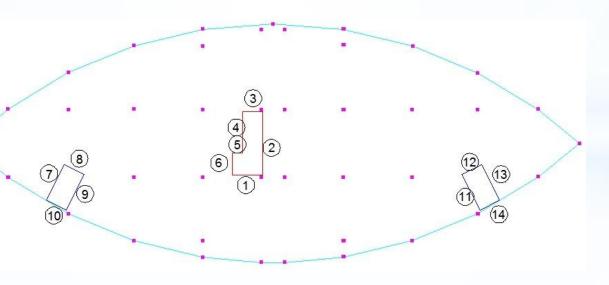
- ARCHITECTURAL IMPACT Columns larger than anticipated
- Larger columns located in more open, spacious areas

Column Redesign

	Introduction	
•		
•	Existing Structural System	Checks
•	Problem Statement	
•	Proposed Solution	Column D-7, L
•	Architectural Breadth:	,
	Column Layout Redesign	$At = 847 ft^2$
•	Slab Redesign	
•	Loads	DL = 180 psf
•	Column Redesign	LL = 80 psf
	Design Criteria	 00 po:
	RAM Model	$W_{u} = 1.2(180)$
	Results / Architectural Impact	···u
	Checks	344(
•	Lateral System Redesign	$P_{u \; 3rd \; floor} = \frac{344(1)}{10}$
•	CM Breadth: Cost Analysis	
•	Flood Analysis	$P_{u \text{ above floors}} = 1$

Column Redesign	
Checks	M _{uT} = 36.12 ft-k
Column D-7, Level 3	M _{uB} = -22.08 ft-k
$At = 847 ft^2$	H = 13.33 ft
DL = 180 psf LL = 80 psf	F _y = 60 ksi
$W_u = 1.2(180) + 1.6(80) = 344 \text{ psf}$	$F'_{c} = 4 \text{ ksi}$
$P_{u \; 3rd \; floor} = \frac{344(8437)}{1000} = 291.37 \; k$	14 #10 bars
	$\Phi P_n = .8\Phi[.85f'_c(A_g - A_{st}) + fy(A_{st})$
$P_{u \text{ above floors}} = 1268.25 \text{ k}$	$\Phi(1559.2) = .8\Phi[.85(4)(20(20) - 2))$
P _u = 291.37 + 1268.25 = 1559.2 k	1559.2 < 1893.1 => ok

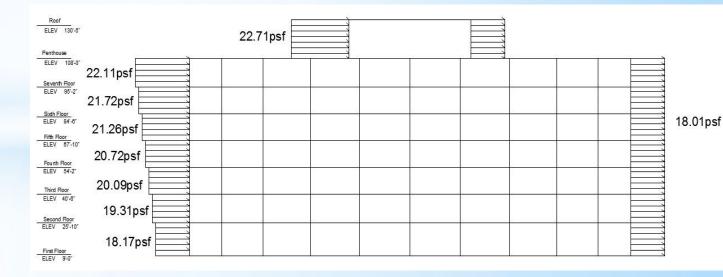
- 14(1.27)) + 60(14)(14)(1.27)]


_{st})]

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
 - Design Criteria
 - Results
- CM Breadth: Cost Analysis
- Flood Analysis

- Original Lateral System
- Redesign
 - Reinforced concrete shear walls Existing concrete walls used
 - - Stair wells (blue)
 - Elevator shaft / mechanical space (red)

Lateral System Redesign


• K-Braced Frame with steel wide-flange and HSS members

New Wind Forces

	Force (k)	Shear (k)	Moment (ft-k)
First	0	149.1	0
Second	76.6	145.0	1289
Third	72.5	147.1	2284
Fourth	72.5	151.0	3274
Fifth	74.6	151.8	4389
Sixth	76.4	178.6	5536
Seventh	75.5	169.3	6504
Penthous e	103.1	66.2	10207
Roof	66.2	0.0	8036

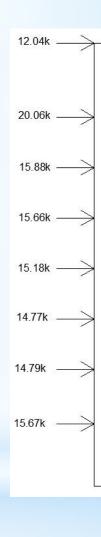
New Wind Diagram

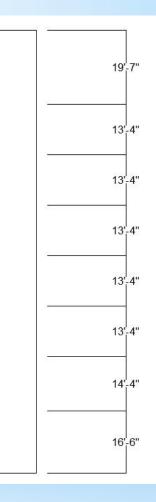
- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
 - Design Criteria
 - Results
- CM Breadth: Cost Analysis
- Flood Analysis

- Results

 - 10" walls

Lateral System Redesign


• Both stairwell and elevator / mechanical space walls needed


J-Values

J
6,549
6,472
32,653

Shear Wall Design

Wall	Reinforcement (bars)	Spacing (inches)
2	#7	16
4	#6	18
6	#2	18
7	#5	16
8	#3	18
9	#5	16
10	#3	18
11	#5	16
12	#3	18
13	#5	16
14	#3	18

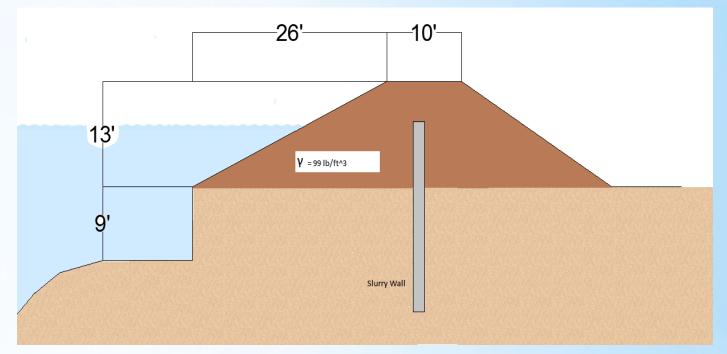
- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- - Slab: \$831,960

 - Shear Walls: \$69,868

Construction Management Breadth: Cost Analysis

Original Steel Design: \$1,411,217


 Concrete Redesign: \$1,285, 191 • Columns: \$383,363

- Introduction
- Existing Structural System
- Problem Statement
- Proposed Solution
- Architectural Breadth: Column Layout Redesign
- Slab Redesign
- Loads
- Column Redesign
- Lateral System Redesign
- CM Breadth: Cost Analysis
- Flood Analysis

- Highest flood level of James River: 22 ft
- VASCIC 9 ft above sea level
- Levee Design
 - Soil: sand, dense and well graded
 - Aesthetically pleasing
 - Resists 811 lb/sf force acting on levee
 - Resists seepage
 - Slurry Wall: Soil-cement bentonite
 - High productivity
 - Verifiable continuity and depth
 - Excellent resistance to contaminated water
 - Ability to easily flex with ground movements
 - Greater trench stability possible
 - Resistant to erosion and burrowing animals

Flood Analysis

Levee Design

Thank You For Your Time